Come si dimostra il teorema di Lagrange?


Teorema di Lagrange

Il teorema di Lagrange afferma che quando una funzione ad una variabile è continua e derivabile in un intervallo compatto (chiuso e limitato), allora ammette almeno un punto in cui la derivata prima è pari al rapporto incrementale che c’è tra i punti estremi dell’intervallo.

Teorema di Rolle

Il teorema di Rolle afferma che quando una funzione è continua e derivabile in un intervallo compatto (chiuso e limitato), e tale funzione assume lo stesso valore nei due estremi di tale intervallo, allora esiste almeno un punto interno all’intervallo dove il valore della derivata si annulla.

Teorema di Cauchy e Altri

Partiamo dal significato geometrico del teorema di Cauchy. Se una curva piana, che sia il grafico di una funzione reale di variabile reale, è dotata ovunque di retta tangente in ogni punto compreso tra due punti A e B, allora almeno una di queste rette tangenti è parallela alla corda AB.

Lascia un commento