Quando un punto è stazionario?


Concetti principali sull’estremo e il punto critico

Un punto critico o stazionario di una funzione differenziabile reale è un punto in cui la derivata si annulla oppure non è definita. Quando si annulla la derivata prima? I punti in cui si annulla la derivata prima si dicono punti stazionari o punti critici. Il calcolo della derivata prima serve per determinare gli intervalli in cui la funzione cresce o decresce, facendoci comprendere se i punti trovati sono di massimo o di minimo. Quando la derivata è uguale a zero? se e solo se è derivabile e la derivata è ovunque nulla nell’intervallo. Mentre la condizione necessaria è conseguenza della definizione di derivata (la derivata di una costante è uguale a zero), la sufficienza segue dal teorema di Lagrange.

Valutare massimi e minimi relativi

Come si calcola il valore massimo? Per conoscere il valore esatto dei punti in corrispondenza dei quali si ha un punto di massimo o di minimo, si deve calcolare la derivata prima della funzione e, successivamente, imporla uguale a zero (f'(x) = 0).

Come si calcola il minimo è il massimo relativo? Indichiamo con x0 un punto del dominio in cui la derivata prima si annulla, e studiamo il segno della derivata sugli intervalli [a,x0) e (x0,b]. allora x0 è un punto di minimo relativo per y=f(x). allora x0 è un punto di massimo relativo per y=f(x).

Lascia un commento