Come trovi la radice quadrata di 33?
Risposta:
Usa un algoritmo per trovare:
#sqrt(33) = [5;bar(1,2,1,10)] = 5+1/(1+1/(2+1/(1+1/(10+1/(1+1/(2+...))))))#
#~~5.744562646538#
Spiegazione:
#33=3*11# non ha fattori quadrati, quindi #sqrt(33)# non può essere semplificato.
È un numero irrazionale un po 'meno di #6#, da #6^2 = 36#.
Per trovare un'approssimazione razionale, troverò una continua espansione della frazione per #sqrt(33)# poi troncalo.
#color(white)()#
Per trovare la semplice espansione continua della frazione di #sqrt(n)#, utilizzare il seguente algoritmo:
#m_0 = 0#
#d_0 = 1#
#a_0 = floor(sqrt(n))##m_(i+1) = d_i a_i - m_i#
#d_(i+1) = (n - m_(i+1)^2)/d_i#
#a_(i+1) = floor((a_0 + m_(i+1)) / d_(i+1))#
Fermati quando #a_i = 2a_0#, segnando la fine della parte ripetuta della frazione continua.
La continua espansione della frazione è quindi:
#[a_0; a_1, a_2, a_3,...]= a_0 + 1/(a_1 + 1/(a_2 + 1/(a_3 + ...)))#
#color(white)()#
Nel nostro esempio, #n = 33# e #floor(sqrt(n)) = 5#, da #5^2 = 25 < 33 < 36 = 6^2#.
Così:
#{ (m_0 = 0), (d_0 = 1), (a_0 = floor(sqrt(33)) = color(blue)(5)) :}#
#{ (m_1 = d_0 a_0 - m_0 = 5), (d_1 = (n - m_1^2)/d_0 = (33-5^2)/1 = 8), (a_1 = floor((a_0 + m_1)/d_1) = floor((5+5)/8) = color(blue)(1)) :}#
#{ (m_2 = d_1 a_1 - m_1 = 8 - 5 = 3), (d_2 = (n - m_2^2)/d_1 = (33-9)/8 = 3), (a_2 = floor((a_0 + m_2)/d_2) = floor((5+3)/3) = color(blue)(2)) :}#
#{ (m_3 = d_2 a_2 - m_2 = 6 - 3 = 3), (d_3 = (n - m_3^2)/d_2 = (33-9)/3 = 8), (a_3 = floor((a_0 + m_3)/d_3) = floor((5+3)/8) = color(blue)(1)) :}#
#{ (m_4 = d_3 a_3 - m_3 = 8-3=5), (d_4 = (n - m_4^2)/d_3 = (33-25)/8 = 1), (a_4 = floor((a_0 + m_4)/d_4) = floor((5+5)/1) = color(blue)(10)) :}#
Avendo raggiunto un valore #color(blue)(10)# che è il doppio del primo valore #color(blue)(5)#, questa è la fine del modello ripetitivo della frazione continua, e abbiamo:
#sqrt(33) = [5;bar(1,2,1,10)]#
La prima approssimazione economica per #sqrt(33)# è poi:
#sqrt(33) ~~ [5;1,2,1] = 5+1/(1+1/(2+1/1)) = 23/4 = 5.75#
Il prossimo è:
#sqrt(33) ~~ [5;1,2,1,10,1,2,1] = 1057/184 ~~ 5.7445652174#
In realtà #sqrt(33)# è più vicino a:
#sqrt(33) ~~ 5.744562646538#