Come si calcola la tensione di vapore dell'etanolo?

Risposta:

Usi l'equazione di Clausius-Clapeyron.

Spiegazione:

Gli esperimenti dimostrano che la tensione di vapore #P#, entalpia di vaporizzazione, #ΔH_"vap"#e temperatura #T# sono correlati dall'equazione

#lnP = "constant" – (ΔH_"vap")/"RT"#

where #R# è la costante di gas ideale. Questa equazione è l'equazione di Clausius-Clapeyron.

If #P_1# e #P_2# sono le pressioni di vapore a due temperature #T_1# e #T_2#, l'equazione assume la forma:

#ln(P_2/(P_1)) = (ΔH_"vap")/R(1/T_1 – 1/T_2)#

L'equazione di Clausius-Clapeyron ci consente di stimare la pressione del vapore a un'altra temperatura, se conosciamo l'entalpia della vaporizzazione e la pressione del vapore a una certa temperatura.

Esempio

L'etanolo ha un calore di vaporizzazione di 38.56 kJ / mol e un normale punto di ebollizione di 78.4 ° C. Qual è la tensione di vapore dell'etanolo a 50.0 ° C?

Soluzione

#T_1 = "(50.0+ 273.15) K = 323.15 K"#; #P_1 = "?"#
#T_2 = "(78.4 + 273.15) K = 351.55 K"#; #P_2 = "760 Torr"#

#ln(P_2/P_1) = (ΔH_"vap")/R (1/T_1 – 1/T_2)#

#ln(("760 Torr")/P_1) = ((38 560 color(red)(cancel(color(black)("J·mol"^(-1)))))/(8.314 color(red)(cancel(color(black)("J·K"^(-1)"mol"^-1))))) (1/(323.15color(red)(cancel(color(black)("K")))) – 1/(351.55 color(red)(cancel(color(black)("K")))))#

#ln(("760 Torr")/P_1) = 4638 × 2.500 × 10^(-4) = 1.159#

#("760 Torr")/P_1 = e^1.159 = 3.188#

#P_1# = #("760 Torr")/3.188 = "238.3 Torr"#

Lascia un commento