What is the derivative of arcsin[x^(1/2)]arcsin[x12]?
What is the derivative of arcsin[x^(1/2)]arcsin[x12]? To find the derivative we will need to use the Regola di derivazione dy/dx=dy/(du)*(du)/(dx)dydx=dydu⋅dudx Vogliamo trovare d/(dx)(arcsin(x^(1/2)))ddx(arcsin(x12)) Dopo l' regola di derivazione lasciamo u=x^(1/2)u=x12 Deriving u we get (du)/(dx)=1/2*x^(-1/2)=1/(2sqrt(x))dudx=12⋅x−12=12√x Now we substitute u in place of x in the original equation and derive to find dy/(du)dydu y=arcsin(u)y=arcsin(u) (dy)/(du)=1/(sqrt(1-u^2)dydu=1√1−u2 Now … Leggi tutto