Come trovi la derivata di #ln (tanx) #?
Come trovi la derivata di #ln (tanx) #? Usa il regola di derivazione E l'uso #d/dx(lnu) = 1/u (du)/dx#. Ne avremo anche bisogno #d/dx(tanx) = sec^2x# #d/dx(ln(tanx))=1/tanx d/dx(tanx) = 1/tanx sec^2x# Abbiamo finito con il calcolo, ma possiamo riscrivere la risposta usando la trigonometria e l'algebra: #d/dx(ln(tanx))= 1/(sinx/cosx) 1/(cos^2x)= 1/sinx 1/cosx = cscx secx#