Come trovare il valore di #csc ((3pi) / 4) #?
Come trovare il valore di #csc ((3pi) / 4) #? L'angolo #((3pi)/4)# è nel quadrante 2 con un angolo di riferimento di #pi/4# #sin(pi/4) = 1/sqrt(2)##color(white)(“XXXX”)#(è uno degli angoli standard) e nel quadrante 2, #sin(x)# è positivo, quindi #color(white)(“XXXX”)##sin((3pi)/4) = sin(pi/4) = 1/sqrt(2)# #csc(x) = 1/(sin(x))# So #csc((3pi)/4) = sqrt(2)#