Domanda # b726c

Domanda # b726c The formaldeide la molecola ha a trigonale planare geometria molecolare. Ecco come lo scopriresti. Inizia con il Struttura di Lewis per formaldeide, #HCHO#. Si noti che l'atomo centrale, che è l'atomo di carbonio, è legato ad altri tre atomi, due idrogeni e un ossigeno, e non ha coppie solitarie presenti. Questo significa … Leggi tutto

Come si creano alberi fattore per 128?

Come si creano alberi fattore per 128? Risposta: #128=2xx2xx2xx2xx2xx2xx2# Spiegazione: L'albero dei fattori è un diagramma, dove troviamo i fattori di un numero, qui è indicato come #128#, quindi i fattori di quei numeri e continuano, fino a quando non possiamo più tenerne conto. È ovvio che le estremità saranno tutti i fattori primi del … Leggi tutto

Come si integra # csc ^ 3x #?

Come si integra # csc ^ 3x #? Risposta: #(-cotxcscx-ln(abs(cotx+cscx)))/2+C# Spiegazione: Abbiamo: #I=intcsc^3xdx# Noi useremo integrazione per parti. Innanzitutto, riscrivi l'integrale come: #I=intcsc^2xcscxdx# Poiché l'integrazione per parti assume la forma #intudv=uv-intvdu#, permettere: #{(u=cscx” “=>” “du=-cotxcscxdx),(dv=csc^2xdx” “=>” “v=-cotx):}# Applicazione dell'integrazione per parti: #I=-cotxcscx-intcot^2xcscxdx# Tramite l'identità pitagorica, scrivi #cot^2x# as #csc^2x-1#. #I=-cotxcscx-int(csc^2x-1)(cscx)dx# #I=-cotxcscx-intcsc^3xdx+intcscxdx# Si noti che #I=intcsc^3xdx# … Leggi tutto