Come valuta cos(π8)?
Risposta:
cos(π8)=√12+√24
Spiegazione:
Use the double-angle formula for cos(x) :
cos(2x)=2cos2(x)−1
⇒cos(x)=±√1+cos(2x)2
Now fill in x = π8
⇒cos(π8)=±√1+cos(π4)2
⇒cos(π8)=√1+√222
⇒cos(π8)=√12+√24
Remarks :
1) cos(π4)=sin(π4)=√22 is a known value
because sin(x)=cos(π2−x), so
sin(π4)=cos(π4) and sin2(x)+cos2(x)=1
⇒2cos2(π4)=1⇒cos(π4)=1√2=√22.
2) because π8 lies in the first quadrant, cos(π8)>0, so
we need to take the solution with the + sign.