What is the formula for 1+sin theta?
There will be several formulas of expressing [math]1+sin\theta[/math]
Firstly [math]sin\theta \implies cos\theta[/math]
[math]sin^2\theta=1-cos^2\theta[/math]
[math]\implies sin\theta=\sqrt{1-cos^2\theta}[/math]
Adding 1 to both sides:-
[math]\implies 1+sin\theta=\sqrt{1-cos^2\theta} +1[/math]
EDIT (Added few more formulas) :
[math]1+sin\theta=sin^2(\theta/2)+cos^2(\theta/2)+sin\theta[/math]
[math]\implies sin^2(\theta/2)+cos^2(\theta/2)+2sin(\theta/2)cos(\theta/2)[/math]
[math]\implies (sin(\theta/2)+cos(\theta/2))^2[/math]
Here is another approach :
[math]1+sin\theta=sin(\pi/2)+sin\theta[/math]
Using [math]sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2][/math]
[math]\implies 2sin(\pi/4+\theta/2)cos(\pi/4-\theta/2)[/math]
Want more?
[math]1+sin\theta=1+\dfrac{2tan(\theta/2)}{1+tan^2(\theta/2)}[/math]
[math]\implies 1+sin\theta=\dfrac{(1+tan(\theta/2))^2}{1+tan^2(\theta/2)}[/math]
[math]\implies (\dfrac{1+tan(\theta/2)}{sec(\theta/2)})^2[/math]
OR
[math]\implies (cos(\theta/2)(1+tan(\theta/2))^2[/math]
Hope it helps.