Come si semplifica # (sec ^ 2x) - (tan ^ 2x) #?
Risposta:
#sec^2 x - tan^2 x = 1#
Spiegazione:
Nota che:
#sin^2 x + cos^2 x = 1#
Quindi:
#cos^2 x = 1 - sin^2 x#
e troviamo:
#sec^2 x - tan^2 x = 1/cos^2 x - sin^2 x/cos^2 x#
#color(white)(sec^2 x - tan^2 x) = (1 - sin^2 x)/cos^2 x#
#color(white)(sec^2 x - tan^2 x) = cos^2 x/cos^2 x#
#color(white)(sec^2 x - tan^2 x) = 1#