Come si integra sqrt (1-x ^ 2) ?

Come si integra sqrt (1-x ^ 2) ? Risposta: La risposta è =1/2arcsinx+1/2xsqrt(1-x^2)+C Spiegazione: lasciare x=sintheta, =>, dx=costhetad theta costheta=sqrt(1-x^2) sin2theta=2sinthetacostheta=2xsqrt(1-x^2) Pertanto, l'integrale è I=intsqrt(1-x^2)dx=intcostheta*costheta d theta =intcos^2thetad theta cos2theta=2cos^2theta-1 cos^2theta=(1+cos2theta)/2 Perciò, I=1/2int(1+cos2theta)d theta =1/2(theta+1/2sin2theta) =1/2arcsinx+1/2xsqrt(1-x^2)+C

What is the Plum Pudding Model?

What is the Plum Pudding Model? Risposta: It is the model of the atom proposed by J. J. Thomson where inside a uniform “ball” of positive charge are located small “plums” of negatively charged electrons. Spiegazione: Thomson knew about the existence of the electrons (he measured some of their properties) but didn’t know a lot … Leggi tutto