Qual è la derivata di # csc ^ 2 (x) #?
Qual è la derivata di # csc ^ 2 (x) #? Risposta: #d/dx[csc^2(x)]= -2cotxcsc^2x# Spiegazione: #csc^2(x)=1/sin^2(x)# #d/dx[csc^2(x)]=d/dx[1/sin^2(x)]# #d/dx[1/sin^2(x)]=d/dx[[sin(x)]^{-2}]# lasciare #u=sinx# #d/dx[[sin(x)]^{-2}]=d/{du}[u^{-2}]d/dx[sinx]# #d/{du}[u^{-2}]= -2u^{-3}# #d/dx[sinx] = cosx# #d/dx[[sin(x)]^{-2}]=-2u^{-3}cosx=-{2cosx}/{sin^3x}# #cosx/sinx=cotx => -{2cosx}/{sin^3x}=-{2cotx}/{sin^2x}# #1/sin^2x=csc^2x => -2cotxcsc^2x # #d/dx[csc^2(x)]= -2cotxcsc^2x#