How do you graph #y=ln(tan^2 x)#?
How do you graph #y=ln(tan^2 x)#? Risposta: vedi sotto Spiegazione: #f(x)=ln(tan^2x)# The Dominio: #uuu_(k in Z)(-pi/2+kpi, kpi)^^uuu_(k in Z)(kpi,pi/2+kpi)# #f(-x)=ln(tan(-x))^2# function tanx is odd: #tan(-x)=-tanx# #=>ln((-tanx)^2)=>ln[(-1)^2*(tanx)^2]=>ln(tan^2x)=f(x)# Funzione #ln(tan^2x)# è anche Has periodicity: #pi# so I will be graphing only the interval #(-pi/2,pi/2)# #f'(x)=1/tan^2x*2tanx*1/cos^2x# #f'(x)=cancel(cos^2x)/sin^2x*2tanx*1/cancel(cos^2x)# #f'(x)=(2tanx)/sin^2x# #tanx=0hArrx=0# #x in (-pi/2,0)hArrf'(x)<0=>#f goes down #x in (0,pi/2)hArrf'(x)>0=>#f goes … Leggi tutto