How do you graph y=ln(tan^2 x)y=ln(tan2x)?
How do you graph y=ln(tan^2 x)y=ln(tan2x)? Risposta: vedi sotto Spiegazione: f(x)=ln(tan^2x)f(x)=ln(tan2x) The Dominio: uuu_(k in Z)(-pi/2+kpi, kpi)^^uuu_(k in Z)(kpi,pi/2+kpi)⋃k∈Z(−π2+kπ,kπ)∧⋃k∈Z(kπ,π2+kπ) f(-x)=ln(tan(-x))^2f(−x)=ln(tan(−x))2 function tanx is odd: tan(-x)=-tanxtan(−x)=−tanx =>ln((-tanx)^2)=>ln[(-1)^2*(tanx)^2]=>ln(tan^2x)=f(x)⇒ln((−tanx)2)⇒ln[(−1)2⋅(tanx)2]⇒ln(tan2x)=f(x) Funzione ln(tan^2x)ln(tan2x) è anche Has periodicity: piπ so I will be graphing only the interval (-pi/2,pi/2)(−π2,π2) f'(x)=1/tan^2x*2tanx*1/cos^2x f'(x)=cancel(cos^2x)/sin^2x*2tanx*1/cancel(cos^2x) f'(x)=(2tanx)/sin^2x tanx=0hArrx=0 x in (-pi/2,0)hArrf'(x)<0=>f goes down x in (0,pi/2)hArrf'(x)>0=>f goes … Leggi tutto