Come dimostrate #cos 3 theta = 4 cos ^ 3 theta - 3 cos theta #?
Risposta:
La prova è riportata di seguito.
Spiegazione:
#cos3theta=cos(2theta+theta)#
#=cos2thetacostheta-sin2thetasintheta#
#=(cos^2theta-sin^2theta)costheta-2sinthetacosthetasintheta#
#=cos^3theta-sin^2costheta-2sin^2thetacostheta#
#=costheta(cos^2theta-sin^2theta-2sin^2theta)#
#=costheta(cos^2theta-3sin^2theta)#
#=cos^3theta-3sin^2thetacostheta#
#=cos^3theta-3(1-cos^2theta)costheta#
#=cos^3theta-3costheta+3cos^3theta#
#=4cos^3theta-3costheta#