Come si determina se #f (x) = (x) ^ 2 -x # è una funzione pari o dispari?
Risposta:
né dispari né pari.
Spiegazione:
To determine if f(x) is even/odd consider the following.
• If f(x) = f( -x) , then f(x) is even
Even functions have symmetry about the y-axis.
• If f( -x) = - f(x) , then f(x) is odd
Odd functions have symmetry about the origin.
Test for even
#f(-x)=(-x)^2-(-x)=x^2+x≠f(x)#
Since f(x) ≠ f( -x) , then f(x) is not even.
Test for odd
#-f(x)=-(x^2-x)=-x^2+x≠f(-x)#
Since f( -x) ≠ - f(x) , then f(x) is not odd.
Thus f(x) is neither odd nor even.
graph{x^2-x [-20, 20, -10, 10]}