Come si integra int [(Sec (x)) ^ 5] dx [(sec(x))5]dx?

Risposta:

int sec^5x dx = (2tanxsec^3x+ 3tanxsecx + 3ln abs(secx+tanx))/8 +Csec5xdx=2tanxsec3x+3tanxsecx+3ln|secx+tanx|8+C

Spiegazione:

Scrivi l'integrando come: sec^5(x) = sec^2(x) sec^3(x)sec5(x)=sec2(x)sec3(x) e si integrano per parti considerando che:

d/dx (tanx) = sec^2(x) ddx(tanx)=sec2(x),

Sun:

int sec^5x dx = int sec^2(x) sec^3(x)dxsec5xdx=sec2(x)sec3(x)dx

int sec^5x dx = int sec^3(x)d(tanx)sec5xdx=sec3(x)d(tanx)

int sec^5x dx = tanxsec^3x - int tanx d(sec^3(x))sec5xdx=tanxsec3xtanxd(sec3(x))

e come:

d/dx (sec^3(x)) = 3sec^2(x) d/dx sec(x) = 3sec^3(x) tanxddx(sec3(x))=3sec2(x)ddxsec(x)=3sec3(x)tanx

si ha:

int sec^5x dx = tanxsec^3x - 3int tan^2x sec^3x dxsec5xdx=tanxsec3x3tan2xsec3xdx

usa ora l'identità trigonometrica:

tan^2 theta = sin^2 theta/cos^2 theta = (1-cos^2 theta)/cos^2theta = sec^2theta -1tan2θ=sin2θcos2θ=1cos2θcos2θ=sec2θ1

avere:

int sec^5x dx = tanxsec^3x - 3int (sec^2x -1) sec^3x dxsec5xdx=tanxsec3x3(sec2x1)sec3xdx

e usando la linearità dell'integrale:

int sec^5x dx = tanxsec^3x + 3int sec^3x dx -3 int sec^5x dxsec5xdx=tanxsec3x+3sec3xdx3sec5xdx

L'integrale ora appare su entrambi i lati dell'equazione e possiamo risolverlo ottenendo una formula di riduzione:

int sec^5x dx = 1/4(tanxsec^3x + 3int sec^3x dx)sec5xdx=14(tanxsec3x+3sec3xdx)

Risolvi ora l'integrale risultante con la stessa procedura:

int sec^3x dx = int secx d(tanx)sec3xdx=secxd(tanx)

int sec^3x dx = tanxsecx - int tanx d(secx)sec3xdx=tanxsecxtanxd(secx)

int sec^3x dx = tanxsecx - int tan^2x secx dxsec3xdx=tanxsecxtan2xsecxdx

int sec^3x dx = tanxsecx - int (sec^2x-1) secx dxsec3xdx=tanxsecx(sec2x1)secxdx

int sec^3x dx = tanxsecx + int secx dx - int sec^3x dxsec3xdx=tanxsecx+secxdxsec3xdx

int sec^3x dx = 1/2(tanxsecx + int secx dx)sec3xdx=12(tanxsecx+secxdx)

Per risolvere la nota integrale risultante che:

d/dx (tanx + secx) = sec^2x +secx tanx = secx(tanx+secx)ddx(tanx+secx)=sec2x+secxtanx=secx(tanx+secx)

così dividendo e moltiplicando l'integrando per (secx+tanx)(secx+tanx):

int secx dx = int (secx(secx+tanx))/(secx+tanx) dxsecxdx=secx(secx+tanx)secx+tanxdx

int secx dx = int (d(secx+tanx))/(secx+tanx)secxdx=d(secx+tanx)secx+tanx

int secx dx = ln abs(secx+tanx) +Csecxdx=ln|secx+tanx|+C

Mettere tutto insieme:

int sec^5x dx = (2tanxsec^3x+ 3tanxsecx + 3ln abs(secx+tanx))/8 +Csec5xdx=2tanxsec3x+3tanxsecx+3ln|secx+tanx|8+C

Lascia un commento