Come si integra int [(Sec (x)) ^ 5] dx ∫[(sec(x))5]dx?
Risposta:
int sec^5x dx = (2tanxsec^3x+ 3tanxsecx + 3ln abs(secx+tanx))/8 +C∫sec5xdx=2tanxsec3x+3tanxsecx+3ln|secx+tanx|8+C
Spiegazione:
Scrivi l'integrando come: sec^5(x) = sec^2(x) sec^3(x)sec5(x)=sec2(x)sec3(x) e si integrano per parti considerando che:
d/dx (tanx) = sec^2(x) ddx(tanx)=sec2(x),
Sun:
int sec^5x dx = int sec^2(x) sec^3(x)dx∫sec5xdx=∫sec2(x)sec3(x)dx
int sec^5x dx = int sec^3(x)d(tanx)∫sec5xdx=∫sec3(x)d(tanx)
int sec^5x dx = tanxsec^3x - int tanx d(sec^3(x))∫sec5xdx=tanxsec3x−∫tanxd(sec3(x))
e come:
d/dx (sec^3(x)) = 3sec^2(x) d/dx sec(x) = 3sec^3(x) tanxddx(sec3(x))=3sec2(x)ddxsec(x)=3sec3(x)tanx
si ha:
int sec^5x dx = tanxsec^3x - 3int tan^2x sec^3x dx∫sec5xdx=tanxsec3x−3∫tan2xsec3xdx
usa ora l'identità trigonometrica:
tan^2 theta = sin^2 theta/cos^2 theta = (1-cos^2 theta)/cos^2theta = sec^2theta -1tan2θ=sin2θcos2θ=1−cos2θcos2θ=sec2θ−1
avere:
int sec^5x dx = tanxsec^3x - 3int (sec^2x -1) sec^3x dx∫sec5xdx=tanxsec3x−3∫(sec2x−1)sec3xdx
e usando la linearità dell'integrale:
int sec^5x dx = tanxsec^3x + 3int sec^3x dx -3 int sec^5x dx∫sec5xdx=tanxsec3x+3∫sec3xdx−3∫sec5xdx
L'integrale ora appare su entrambi i lati dell'equazione e possiamo risolverlo ottenendo una formula di riduzione:
int sec^5x dx = 1/4(tanxsec^3x + 3int sec^3x dx)∫sec5xdx=14(tanxsec3x+3∫sec3xdx)
Risolvi ora l'integrale risultante con la stessa procedura:
int sec^3x dx = int secx d(tanx)∫sec3xdx=∫secxd(tanx)
int sec^3x dx = tanxsecx - int tanx d(secx)∫sec3xdx=tanxsecx−∫tanxd(secx)
int sec^3x dx = tanxsecx - int tan^2x secx dx∫sec3xdx=tanxsecx−∫tan2xsecxdx
int sec^3x dx = tanxsecx - int (sec^2x-1) secx dx∫sec3xdx=tanxsecx−∫(sec2x−1)secxdx
int sec^3x dx = tanxsecx + int secx dx - int sec^3x dx∫sec3xdx=tanxsecx+∫secxdx−∫sec3xdx
int sec^3x dx = 1/2(tanxsecx + int secx dx)∫sec3xdx=12(tanxsecx+∫secxdx)
Per risolvere la nota integrale risultante che:
d/dx (tanx + secx) = sec^2x +secx tanx = secx(tanx+secx)ddx(tanx+secx)=sec2x+secxtanx=secx(tanx+secx)
così dividendo e moltiplicando l'integrando per (secx+tanx)(secx+tanx):
int secx dx = int (secx(secx+tanx))/(secx+tanx) dx∫secxdx=∫secx(secx+tanx)secx+tanxdx
int secx dx = int (d(secx+tanx))/(secx+tanx)∫secxdx=∫d(secx+tanx)secx+tanx
int secx dx = ln abs(secx+tanx) +C∫secxdx=ln|secx+tanx|+C
Mettere tutto insieme:
int sec^5x dx = (2tanxsec^3x+ 3tanxsecx + 3ln abs(secx+tanx))/8 +C∫sec5xdx=2tanxsec3x+3tanxsecx+3ln|secx+tanx|8+C