Come si semplifica sin(π6+x)?
Risposta:
12cosx+√32sinx
Spiegazione:
Using the appropriate Addition formula
∣∣ ∣∣¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯aasin(A±B)sinAcosB±cosAsinBaa∣∣−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
then sin(π6+x)=sin(π6)cosx+cos(π6)sinx
Using the exact value triangle for this angle
![]()
Then sin(π6)=12 and cos(π6)=√32
⇒sin(π6+x)=12cosx+√32sinx