Qual è la derivata di cot ^ 2 (x) ?

RISPOSTA
d/dx cot^2(x)= -2cot(x)csc^2(x)

SPIEGAZIONE

Useresti il regola di derivazione per risolvere questo. Per fare ciò, dovrai determinare quale sia la funzione "esterna" e quale sia la funzione "interna" composta nella funzione esterna.

In questo caso, cot(x) è la funzione "interna" che è composta come parte di cot^2(x). Per guardarlo in un altro modo, denotiamo u=cot(x) affinché u^2=cot^2(x). Notate come funziona la funzione composita? La funzione "esterna" di u^2 quadra la funzione interna di u=cot(x). La funzione esterna ha determinato cosa è successo alla funzione interna.

Non lasciare che il u confonderti, è solo per mostrarti come una funzione è un composito dell'altra. Non devi nemmeno usarlo. Una volta capito questo, puoi derivarne.

La regola della catena è:

F'(x)=f'(g(x))(g'(x))

O, a parole:
la derivata della funzione esterna (con la funzione interna lasciata sola!) volte la derivata della funzione interna.

1) La derivata della funzione esterna u^2=cot^2(x) (con la funzione interna lasciata sola) è:
d/dx u^2= 2u

(Lascio il u in per ora ma è possibile sub in u=cot(x) se vuoi mentre stai facendo i passaggi. Ricorda che questi sono solo passaggi, la derivata effettiva della domanda è mostrata in basso)

2) La derivata della funzione interna:
d/dx cot (x)= d/dx 1/tan(x) =d/dx sin(x)/cos(x)

Un attimo! Devi fare un regola del quoziente qui, a meno che tu non abbia memorizzato la derivata di cot(x)
d/dx cos(x)/sin(x)=(-sin^2(x)-cos^2x)/(sin^2(x))=-(sin^2(x)+cos^2x)/(sin^2(x))= -1/(sin^2(x)) = -csc^2(x)

Combinando i due passaggi attraverso la moltiplicazione per ottenere la derivata:
d/dx cot^2(x)= -2cot(x)csc^2(x)

Lascia un commento