Qual è l'integrale di cos ^ (2) 3x dx cos23xdx?
Risposta:
1/2(1/6sin6x +x) +c12(16sin6x+x)+c
Spiegazione:
int (cos3x)^2 dx∫(cos3x)2dx
=int 1/2(cos6x +1) dx∫12(cos6x+1)dx
=1/2intcos 6x+1 dx12∫cos6x+1dx
=1/2(1/6sin6x +x) +c12(16sin6x+x)+c
1/2(1/6sin6x +x) +c12(16sin6x+x)+c
int (cos3x)^2 dx∫(cos3x)2dx
=int 1/2(cos6x +1) dx∫12(cos6x+1)dx
=1/2intcos 6x+1 dx12∫cos6x+1dx
=1/2(1/6sin6x +x) +c12(16sin6x+x)+c