Qual è l'integrale di tan ^ 5 (x) dx tan5(x)dx?

Risposta:

int tan^5 x dx=1/4tan^4 x -1/2*tan^2 x+ln sec x+Ctan5xdx=14tan4x12tan2x+lnsecx+C

Spiegazione:

Il dato è da trovare int tan^5 x dxtan5xdx

Soluzione:

int tan^5 x* dxtan5xdx

int tan^5 x* dx=int tan^3 x*tan^2 x dxtan5xdx=tan3xtan2xdx

int tan^5 x *dx=int tan^3 x*(sec^2 x-1) dx=int (tan^3 x sec^2 x-tan^3 x) dxtan5xdx=tan3x(sec2x1)dx=(tan3xsec2xtan3x)dx

int tan^5 x* dx=int (tan^3 x sec^2 x)dx-int tan^3 x dxtan5xdx=(tan3xsec2x)dxtan3xdx

int tan^5 x* dx=int (tan^3 x sec^2 x)dx-int tan^2 x *tan x dxtan5xdx=(tan3xsec2x)dxtan2xtanxdx

int tan^5 x* dx=int (tan^3 x sec^2 x)dx-int (sec^2 x-1) *tan x dxtan5xdx=(tan3xsec2x)dx(sec2x1)tanxdx

int tan^5 x *dx=tan5xdx=
int (tan^3 x sec^2 x)dx-int (tan x*sec^2 x)dx+int (tan x) dx(tan3xsec2x)dx(tanxsec2x)dx+(tanx)dx

int tan^5 x *dx=1/4tan^4 x -1/2*tan^2 x+ln sec x+Ctan5xdx=14tan4x12tan2x+lnsecx+C

Dio benedica .... Spero che la spiegazione sia utile.

Lascia un commento