Come trovare b in forma di equazione lineare y = mx + b se le 2 coordinate sono (5,6) e (1,0)?
Risposta:
#color(blue)(y = (3/2)x - (3/2)#
#color(purple)( " is the slope-intercept form of equation with slope = 3/2, y-intercept = -3/2"#
Spiegazione:
#(x_1,y_1) = (5,6), (x_2,y_2) = (1,0)#
L'equazione della linea è #(y-y_1) / (y_2 - y_1) = (x-x_1) / (x_2-x_1) #
#(y - 6) / (0-6) = (x-5) / (1-5)#
#(y-6) /cancel( -6 )^color(red)(3)= (x-5) /cancel( -4)^color(red)(2)#
#2y - 12 = 3x - 15, " cross multiplying"#
#2y = 3x - 15 + 12#
Forma standard di pendenza-equcept equation is #color(indigo)(y = mx + c#
#color(blue)(y = (3/2)x - (3/2)#
#color(purple)( " is the slope-intercept form of equation with slope = 3/2, y-intercept = -3/2"#