Come si verifica l’identità: # (1 + cos x + sinx) / (1 + cos x-sin x) = sec x + tan x #?
Come si verifica l'identità: # (1 + cos x + sinx) / (1 + cos x-sin x) = sec x + tan x #? #(1+cosx+ sinx) / (1+cosx-sinx)=secx+tanx | * (1+cosx-sinx)# #1+cosx+ sinx=(1/cosx+sinx/cosx)* (1+cosx-sinx)# #=(1+cosx-sinx)/cosx+(1+cosx-sinx)*sinx/cosx# #(1+cosx-sinx)/cosx=color(blue)(secx+1-tanx)# #(1+cosx-sinx)*sinx/cosx=color(red)(tanx+sinx-sinxtanx)# #1+cosx+ sinx=color(blue)(secx+1cancel(-tanx))+color(red)(cancel(tanx)+sinx-sinxtanx)# #1+cosx+ sinx=secx+1+sinx-sinxtanx|-1-sinx# #cosx=secx-sinxtanx|*cosx# #cos^2x=1-sin^2x|+sin^2x# #cos^2x+sin^2x=1#