Come si trova l'area della regione delimitata dalla curva polare r = 2-sin (theta) ?
La curva polare r=2-sin theta, 0 le theta < 2pi Somiglia a questo.
possiamo trovare la zona A della regione chiusa può essere trovato da
A=int_0^{2pi}int_0^{2-sin theta}r dr d theta={9pi}/2
Valutiamo il doppio integrale sopra.
A=int_0^{2pi}int_0^{2-sin theta}r dr d theta
=int_0^{2pi}[r^2/2]_0^{2-sin theta} d theta
=1/2int_0^{2pi}(2-sin theta)^2 d theta
=1/2int_0^{2pi}(4-4sin theta+ sin^2 theta) d theta
by sin^2 theta=1/2(1-cos 2theta),
=1/2int_0^{2pi}(9/2-4sin theta-1/2cos2theta)d theta
=1/2[9/2theta+4cos theta-1/4sin2theta]_0^{2pi}
=1/2[9pi+4-0-(0+4-0)]={9pi}/2