Come trovate tutte le soluzioni di # 2cos ^ 2x-sinx-1 = 0 #?

#2 cos^2 x - sin x - 1 = 0# for
#x in { (3pi)/2+2npi, pi/6+2npi, (5pi)/6+2npi}# where #n in ZZ#

Risolvere : #2cos^2 x - sin x - 1 = 0# (1)

Innanzitutto, sostituisci #cos^2 x# by #(1 - sin^2 x)#

#2(1 - sin^2 x) - sin x - 1 = 0#.

Chiamaci # sin x = t#, noi abbiamo:
#-2t^2 - t + 1 = 0#.
Questa è un'equazione quadratica della forma #at^2+bt+c = 0# che può essere risolto con il collegamento:
#t = (-b +- sqrt(b^2 -4ac))/(2a)#
o factoring a #-(2t-1)(t+1)=0#

Una vera radice è #t_1 = -1# e l'altro è #t_2 = 1/2#.

Quindi risolvi le 2 funzioni di base del trig:
#t_1 = sin x_1 = -1#
#rarr# #x_1 = pi/2 + 2npi# (Per #n in ZZ#)
e
#t_2 = sin x_2 = 1/2#
#rarr# #x_2 = pi/6 + 2npi#

or
#rarr# #x_2 = (5pi)/6 + 2npi#

Verifica con equazione (1):
#cos (3pi/2) = 0; sin (3pi/2) = -1#
#x = 3pi/2 rarr 0 + 1 - 1 = 0# (corretta)
#cos (pi/6) = (sqrt 3)/2 rarr 2*cos^ 2(pi/6) = 3/2; sin (pi/6) = 1/2#.
#x = pi/6 rarr 3/2 - 1/2 - 1 = 0# (corretta)

Lascia un commento