Come valuti cos ^ -1 (-1/2) cos−1(−12)?
Risposta:
cos^(-1)(-1/2)=theta=120^0cos−1(−12)=θ=1200
Che è lo stesso di: 2/3 pi" radians"23π radians
Spiegazione:
color(brown)("Consider the vertex A as being at the origin of an x y graph plane")Consider the vertex A as being at the origin of an x y graph plane
color(brown)("In which case the length of triangle side AB is always positive.")In which case the length of triangle side AB is always positive.
color(brown)("Also the only way a trig ratio of the triangles vertex A")Also the only way a trig ratio of the triangles vertex A
color(brown)("can be negative is for either x or y to by negative.")can be negative is for either x or y to by negative.
Lascia che l'angolo sconosciuto sia thetaθ
cos(/_A) =cos(60^0)= x/("hypotenuse")=x/c = 1/2" "cos(∠A)=cos(600)=xhypotenuse=xc=12
Quindi se questa fosse la condizione (non lo è!) Allora cos^(-1)(1/2)=60^0cos−1(12)=600
Ma noi abbiamo cos(theta)= ("adjacent")/("hypotenuse")=x/("hypotenuse")=-1/2->(-1)/2cos(θ)=adjacenthypotenuse=xhypotenuse=−12→−12
Dato che l'ipotenusa è positiva allora xx deve essere negativo
So cos(120^0)=(-x)/c=-cos(180-120)=-cos(60)=-1/2cos(1200)=−xc=−cos(180−120)=−cos(60)=−12
così color(blue)(theta= 120^0)θ=1200
so cos^(-1)(-1/2)=theta=120^0cos−1(−12)=θ=1200
Per qualificarti per il misura radiante-> 120/180xxpi = 2/3 pi" radians"→120180×π=23π radians