Espansione della serie maclaurin di cos ^ 2x?
Risposta:
#cos^2x = 1 - x^2+ 1/3x^4 + ... =((-1)^n(2x)^(2n))/(2(2n)!)#
Spiegazione:
Richiama questo
#cos(2x) = 2cos^2x - 1#
lasciare #x = cos^2x# e #y = cos(2x)#. Poi
#y = 2x -1#
#(y + 1)/2 = x#
#(cos(2x)+ 1)/2 = cos^2x#
Ora possiamo usare il fatto che
# cosx = 1 - x^2/(2!) + x^4/(4!) +... =sum_(n = 0)^oo(-1)^nx^(2n)/((2n)!)#
Per vederlo
#cos(2x) = 1 - (2x)^2/(2!) + (2x)^4/(4!) + ... = sum_(n = 0)^oo (-1)^n(2x)^(2n)/((2n!)#
#cos(2x) + 1 = 2 -(4x^2)/(2!) + (2x)^4/(4!) + ... = sum_(n = 0)^oo ((-1)^n(2x)^(2n))/((2n)!)#
#(cos(2x) + 1)/2 = 1 - x^2+ 1/3x^4 + ... =((-1)^n(2x)^(2n))/(2(2n)!)#
Speriamo che questo aiuti!