Come giudichi sin ((7pi) / 2) sin(7π2)?
Come giudichi sin ((7pi) / 2) sin(7π2)? Risposta: sin((7pi)/2)=-1sin(7π2)=−1 Spiegazione: Lo sappiamo, color(red)(sin(3pi+theta)=-sinthetasin(3π+θ)=−sinθ Qui, sin((7pi)/2)=sin((6pi+pi)/2)sin(7π2)=sin(6π+π2) =sin(3pi+pi/2)…toIII^(rd) Quadrant, where, sin is -ve=sin(3π+π2)…→IIIrdQuadrant,where,sinis−ve =-sin(pi/2)=−sin(π2) =-1=−1 Nota: (1)theta=pi/2,(5pi)/2,(9pi)/2,(13pi)/2…=>sintheta=1(1)θ=π2,5π2,9π2,13π2…⇒sinθ=1 (2)theta=(3pi)/2,(7pi)/2,(11pi)/2,(15pi)/2…=>sintheta=-1(2)θ=3π2,7π2,11π2,15π2…⇒sinθ=−1