Un proprietario di casa ha 60 piedi di materiale scherma per racchiudere un'area rettangolare in cui i suoi animali domestici possono giocare. Userà un lato della sua casa come un lato dell'area giochi. Quali dimensioni dovrebbe usare se vuole massimizzare l'area di gioco?

Risposta:

L'area massima è #450# piedi quadrati quando le dimensioni dell'area di gioco sono #30'xx15'#, Dove#30# i piedi sono lungo il lato della casa.

Spiegazione:

lasciare #l# essere la lunghezza lungo il lato della casa e #w# essere la larghezza.

Quindi sarà necessaria la scherma #l+w+w=l+2w# e questo è #60#piedi. In altre parole #l+2w=60# vale a dire #w=(60-l)/2=30-l/2#

L'area coperta da questo sarà #lxx(30-l/2)=30l-l^2/2#

= #-1/2(l^2-60l)#

= #-1/2(l^2-60l+900)+450#

= #-1/2(l-30)^2+450#

È evidente che come coefficiente di #(l-30)^2# is #-1/2#,

#-1/2(i-30)^2# è sempre negativo, tranne che lo è #0# quando #l=30# e quindi l'area massima a questo livello è #450# piedi quadrati e dimensioni dell'area di gioco saranno #30'xx15'#, Dove#30# i piedi sono lungo il lato della casa.

Lascia un commento