What is the derivative of #arcsin[x^(1/2)]#?
To find the derivative we will need to use the Regola di derivazione
#dy/dx=dy/(du)*(du)/(dx)#
Vogliamo trovare
#d/(dx)(arcsin(x^(1/2)))#
Dopo l' regola di derivazione lasciamo #u=x^(1/2)#
Deriving u we get
#(du)/(dx)=1/2*x^(-1/2)=1/(2sqrt(x))#
Now we substitute u in place of x in the original equation and derive to find #dy/(du)#
#y=arcsin(u)#
#(dy)/(du)=1/(sqrt(1-u^2)#
Now we substitute these derived values into the chain rule to
Find #dy/(dx)#
#dy/dx=dy/(du)*(du)/(dx)#
#dy/dx=1/(sqrt(1-u^2))*1/(2sqrt(x))#
Substitute x back into the equation to get the derivative in terms of x only and simplify
#u=x^(1/2)#
#dy/dx=1/(sqrt(1-(x^(1/2))^2))*1/(2sqrt(x))#
#dy/(dx)=1/(sqrt(1-x))*1/(2sqrt(x))#
#dy/(dx)=1/(2sqrt(x)*sqrt(1-x))#
#dy/(dx)=1/(2sqrt(x-x^2))#