Come consideri il fattore 1 – 2.25x ^ 8 #?
Come consideri il fattore 1 – 2.25x ^ 8 ? Risposta: 1-2.25x^8 =1/4(root(4)(2)-root(4)(3)x)(root(4)(2)+root(4)(3)x)(sqrt(2)+sqrt(3)x^2)(sqrt(2)-root(4)(24)x+sqrt(3)x^2)(sqrt(2)+root(4)(24)x+sqrt(3)x^2) Spiegazione: Alcune identità che useremo: Differenza dell'identità dei quadrati: a^2-b^2 = (a-b)(a+b) Somma dell'identità del quarto potere: a^4+b^4 = (a^2-sqrt(2)ab+b^2)(a^2+sqrt(2)ab+b^2) Così: 1-2.25x^8 =1/4(4-9x^8) =1/4(2^2-(3x^4)^2) =1/4(2-3x^4)(2+3x^4) =1/4((sqrt(2))^2-(sqrt(3)x^2)^2)(2+3x^4) =1/4(sqrt(2)-sqrt(3)x^2)(sqrt(2)+sqrt(3)x^2)(2+3x^4) =1/4((root(4)(2))^2-(root(4)(3)x)^2)(sqrt(2)+sqrt(3)x^2)(2+3x^4) =1/4(root(4)(2)-root(4)(3)x)(root(4)(2)+root(4)(3)x)(sqrt(2)+sqrt(3)x^2)(2+3x^4) =1/4(root(4)(2)-root(4)(3)x)(root(4)(2)+root(4)(3)x)(sqrt(2)+sqrt(3)x^2)((root(4)(2))^4+(root(4)(3)x)^4) =1/4(root(4)(2)-root(4)(3)x)(root(4)(2)+root(4)(3)x)(sqrt(2)+sqrt(3)x^2)(sqrt(2)-sqrt(2)root(4)(2)root(4)(3)x+sqrt(3)x^2)(sqrt(2)+sqrt(2)root(4)(2)root(4)(3)x+sqrt(3)x^2) =1/4(root(4)(2)-root(4)(3)x)(root(4)(2)+root(4)(3)x)(sqrt(2)+sqrt(3)x^2)(sqrt(2)-root(4)(24)x+sqrt(3)x^2)(sqrt(2)+root(4)(24)x+sqrt(3)x^2)#