Come valuta l'integrale int sec ^ 3x / tanx ∫sec3xtanx? Risposta: 1/2ln|(cosx-1)/(cosx+1)|+secx+C, or, ln|tan(x/2)|+secx+C12ln∣∣∣cosx−1cosx+1∣∣∣+secx+C,or,ln∣∣tan(x2)∣∣+secx+C. Spiegazione: lasciare I=intsec^3x/tanxdx=int(1/cos^3x)(cosx/sinx)dxI=∫sec3xtanxdx=∫(1cos3x)(cosxsinx)dx =int1/(cos^2xsinx)dx=intsinx/(cos^2xsin^2x)dx=∫1cos2xsinxdx=∫sinxcos2xsin2xdx :. I=-int{(-sinx)/{cos^2x(1-cos^2x)}dx∴I=−∫{−sinxcos2x(1−cos2x)dx sostituendo cosx=t,” so that, “-sinxdx=dtcosx=t,”sotˆ,“−sinxdx=dt, noi abbiamo, I=int1/{t^2(t^2-1)}dt=int{t^2-(t^2-1)}/{t^2(t^2-1)}dtI=∫1t2(t2−1)dt=∫t2−(t2−1)t2(t2−1)dt =int[t^2/{t^2(t^2-1)}-(t^2-1)/{t^2(t^2-1)}]dt=∫[t2t2(t2−1)−t2−1t2(t2−1)]dt =int[1/(t^2-1)-1/t^2]dt=∫[1t2−1−1t2]dt 1/2ln|(t-1)/(t+1)|+1/t12ln∣∣∣t−1t+1∣∣∣+1t. Da, t=cosxt=cosx, noi abbiamo, I=1/2ln|(cosx-1)/(cosx+1)|+secx+CI=12ln∣∣∣cosx−1cosx+1∣∣∣+secx+C. Buona matematica! NB: -II può essere ulteriormente semplificato come ln|tan(x/2)|+secx+Cln∣∣tan(x2)∣∣+secx+C.