Come trova l'antiderivativo di e ^ (3x) ?
Risposta:
int e^(3x) dx = 1/3e^(3x) + C
Spiegazione:
utilizzando d/dx e^(ax) = ae^(ax) <=> int ae^(ax) dx = e^(ax) + C'
:. int e^(ax) dx = e^(ax)/a + C
Quindi, int e^(3x) dx = 1/3e^(3x) + C
int e^(3x) dx = 1/3e^(3x) + C
utilizzando d/dx e^(ax) = ae^(ax) <=> int ae^(ax) dx = e^(ax) + C'
:. int e^(ax) dx = e^(ax)/a + C
Quindi, int e^(3x) dx = 1/3e^(3x) + C