Come trovi il limite di # (1-cosx) / x # mentre x si avvicina a 0?
Risposta:
#0#
Spiegazione:
#1-cosx=2sin^2(x/2)# so
#(1-cos x)/x=(x/4) (sin(x/2)/(x/2))^2# poi
#lim_(x->0)(1-cos x)/x equiv lim_(x->0)(x/4) (sin(x/2)/(x/2))^2 = 0 cdot 1 = 0#
#0#
#1-cosx=2sin^2(x/2)# so
#(1-cos x)/x=(x/4) (sin(x/2)/(x/2))^2# poi
#lim_(x->0)(1-cos x)/x equiv lim_(x->0)(x/4) (sin(x/2)/(x/2))^2 = 0 cdot 1 = 0#