Trova la somma di una sequenza geometrica finita da n = 1 a n = 6, usando l'espressione −2 (5) ^ n - 1? 1,223 −1,023 7,812 −7,812

Risposta:

#-7,812#

Spiegazione:

Somma #= sum_(n=1)^6 -2(5)^(n-1)#

Applica linearità.

Somma #= -2 * sum_(n=1)^6 5^(n-1)#

La somma è una serie geometrica con il primo termine #a_1 = 5^0 =1# e rapporto comune #r =5#

Sappiamo che la somma del primo #n# i termini di una serie geometrica sono dati da:

#S_n = (a_1(1-r^n))/(1-r)#

Quindi, in questo esempio:

Somma #= -2* (1(1-5^6))/(1-5)#

#= 1/2(1-15625)#

#= -15624/2 = -7,812#

Lascia un commento